Subspace Learning for Background Modeling: A Survey
نویسندگان
چکیده
منابع مشابه
Background modeling by subspace learning on spatio-temporal patches
This paper presents a novel background model for video surveillance—Spatio-Temporal Patch based Background Modeling (STPBM). We use spatio-temporal patches, called bricks, to characterize both the appearance and motion information. Our method is based on the observation that all the background bricks at a given location under all possible lighting conditions lie in a low dimensional background ...
متن کاملIncremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction
Background subtraction (BS) is the art of separating moving objects from their background. The Background Modeling (BM) is one of the main steps of the BS process. Several subspace learning (SL) algorithms based on matrix and tensor tools have been used to perform the BM of the scenes. However, several SL algorithms work on a batch process increasing memory consumption when data size is very la...
متن کاملA survey of multilinear subspace learning for tensor data
Increasingly large amount of multidimensional data are being generated on a daily basis in many applications. This leads to a strong demand for learning algorithms to extract useful information from these massive data. This paper surveys the field of multilinear subspace learning (MSL) for dimensionality reduction of multidimensional data directly from their tensorial representations. It discus...
متن کاملReal-Time Subspace-Based Background Modeling Using Multi-channel Data
Background modeling and subtraction using subspaces is attractive in real-time computer vision applications due to its low computational cost. However, the application of this method is mostly limited to the gray-scale images since the integration of multi-channel data is not straightforward; it involves much higher dimensional space and causes additional difficulty to manage data in general. W...
متن کاملImproved Adaptive Mixture Learning for Robust Video Background Modeling
2 Related Works Gaussian mixtures are often used for data modeling in many real-time applications such as video background modeling and speaker direction tracking. The real-time and dynamic nature of these systems prevents the use of a batch EM algorithm. Currently, online learning of mixture models on dynamic data is achieved using an adaptive filter coupled with reassignment rules. However, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Recent Patents on Computer Science
سال: 2010
ISSN: 1874-4796
DOI: 10.2174/1874479610902030223